
An HLA Compliant Agent-Based Fast-Time Simulation Architecture For
Analysis Of Civil Aviation Concepts

Jesse Aronson†, Vikram Manikonda*, Wilbur Peng*, Renato Levy* and Karlin Roth‡

†Science Applications International Corporation

1100 N. Glebe Road, Suite 1100, Arlington, VA 22201
aronsonj@saic.com

*Intelligent Automation Incorporated

7519 Standish Place, Suite 200, Rockville, MD 20855
{vikram, wpeng, rlevy}@i-a-i.com

‡NASA Ames Research Center
Moffett Field, CA 94035-1000

kroth@mail.arc.nasa.gov

Keywords:
Agents, OpenCybele, HLA, Composable Simulations, Air Traffic Modeling and Control

ABSTRACT: This paper describes the architecture of the Airspace Concept Evaluation System (ACES), a fast-time
simulation being developed by NASA as an analysis tool for evaluating novel concepts in air traffic management. ACES
has the goal of supporting a wide range of studies and evaluations. Researchers will use ACES for evaluating a wide
range of air traffic management concepts and technologies. Consequently the ACES architecture is required to be
computationally efficient, flexible and modular. At the core of the ACES architecture is the High Level Architecture
(HLA) RTI integrated with Cybele, an agent infrastructure. The paper describes how the agent- and HLA-based
approach chosen for ACES satisfies customer requirements, how an ACES federation operates and provides an
operational concept of how researchers will work with the system.

1. Introduction
Over time, the demand for air travel continues to increase.
With an average traffic growth rate of over 4% per year
current studies predict significant increases in delays and
air traffic congestion in the coming years. [1] There is
significant concern that the current NAS operational
paradigm cannot accommodate the forecasted steadily
increasing air travel demand. NASA, as a leader in Air
Traffic Management research, has made improvement of
the National Airspace System one of its highest priorities.
In 2002 NASA initiated the Virtual Airspace Modeling
and Simulation (VAMS) Project, a five year research and
development effort in response to the projected growth of
the demand for air travel and lack of sufficient system
capacity to meet this demand. The need to evaluate the
costs and benefits of new operational paradigms early in
the development process is of paramount importance in

identifying the most promising concepts. In recognition of
this critical evaluation function, one objective of the
NASA VAMS Project is to develop a national simulation
and modeling capability for system-level design and
tradeoff studies. This objective is being met through the
development of the Airspace Concept Evaluation System
(ACES) fast-time simulation [1][3]. This paper describes
the architecture of the ACES system and shows how this
architecture meets VAMS project requirements.

The initial major application of ACES will be in
evaluating a set of operational concepts being developed
within VAMS. These operational concepts range from
insertion of technologies into particular segments of the
NAS (e.g., the use of automation to increase runway
throughput at airports) to system-wide operational
changes (e.g., shifting traffic away from “hub and spoke”
operations towards “point to point” service). Some

concepts are complementary and may ultimately be
combined, while others offer competing solutions to
particular NAS capacity challenges. Evaluations of
operational concepts must be able to include cost,
capacity and safety metrics.

The need to flexibly evaluate a varied set of individual
and combined concepts leads to a set of simulation system
requirements including: flexible simulations that can be
tailored to individual researchers’ needs ("plug and play
modeling toolkit"); standardized modeling interfaces to
allow for easy integration of new models and legacy
simulations; ability to scale to multiple processors to
achieve required fast-time performance; ability to
integrate legacy codes; and data collection that is easily
adaptable to the researcher's specific needs.

This paper describes the architecture of the of the ACES
system. At the core of the system is the High Level
Architecture (HLA) integrated with Cybele‰ [4] an
agent-based modeling and simulation framework. The
agent infrastructure provides the modeling and simulation
framework at the federate level while the HLA RTI
provides the infrastructure at the inter-federate level. The
architecture fosters composability by (i) insulating models
from the specifics of particular simulation frameworks,
thus making it easier to reuse them in a range of
environments; (ii) allowing models to be composed both
within the federate and at the FOM level; and (c)
providing core services such as time management, event
management, thread management and communication
services at the federate level that are compatible with the
RTI. The architecture reduces the effort required on the
part of the modeler by abstracting away the details of
distributed simulation.

The paper is organized as follows. In Section 2 we define
agents and their relation ship to federate and federations.
In Section 3 we present the design of the ACES
architectures. Specific details of the agent simulation
framework and its interaction with the RTI Are defined in
sections 4 and 5 respectively. A brief overview of the
model design and development from a modelers’
perspective is presented in Section 6. Simulation
Management and data collection are discussed in Section
7. Section 8 provides conclusions and directions for future
work.

2. Terminology and Definitions
A software agent is often defined as persistent software
entity that acts autonomously on behalf of a user by
receiving (via sensors) inputs (messages, events) and acts
(sends a response, changes an internal state) in response
to the inputs (See [5][6] and references therein).

Attributes of agents can also include intelligence, fault
tolerance, mobility, proactive behavior, adaptability etc.
From a software perspective we define an agent as a
software object that possesses the following conceptual
characteristics:
• Encapsulation of local state. Agents encapsulate state

and cannot directly access the state of other agents.
This enables agents to be reconfigured and
distributed across nodes.

• Independent execution. Agents independently control
how and when they execute. There is no single
execution control structure that controls agent
execution.

• Message and event driven behavior. Agents interact
with the world and with other agents by
communicating through some well defined-set of
messages and protocols.

From a modeling and simulation perspective we view an
agent as having the following organization that is based
on the Activity Centric Programming Paradigm (ACP)
and characteristics [7]:

• An agent defines an autonomous module of a
particular simulation that interacts with other agents
via messages/events. Agents are also typically the
smallest unit of the simulation that can be distributed.
Example: Flight Agent, Center Air Traffic Control
(ATC) Agent, Airport Agent.

• Each agent is composed of activities where each
activity encapsulates a particular role/behavior of the
agent. Example: ATC agents can be decomposed
into activities corresponding to Conflict Detections &
Resolution (CD&R), aircraft vectoring and inter-
controller communication and handoffs.

• Each activity is further composed of (i) a role layer
that describes the syntax and semantics of the
different types of interactions that an agent can
perform in an application. Roles capture the
formalities of an interaction-protocol. For example a
role layer can define the interaction protocol of
handoff between controllers (ii) a domain layer that
represents the domain expertise (e.g., flight
dynamics, reasoning component, sorting etc) of the
agent and can be implemented in any
software/languages or could even be legacy software;
and (iii) a glue layer consisting of a set of adapter
objects that implement the interface required by a
role by making appropriate method invocations on
the local domain objects. The adaptor layer loosens
the coupling between models and communications
protocols, facilitating reuse of models across multiple
applications.

In a simulation we view the relationship between agents,
federates and federations as follows
• A federate is composed of a set of individual agents.

For example a North East federate could be
composed on the set of airports, air traffic control
facilities and flights in the northeast corridor.

• The federation describes the combined system that is
composed of constituent independently executing
programs known as federates.

Figure 1: Activity/Agent/Federate/Federation Hierarchy

Figure 1 depicts the relationship between agents and their
activities, federates and federations in ACES.

3. ACES Architecture

3.1 Architectural Requirements
ACES is being developed to satisfy a set of goals and
requirements encompassing both runtime and
development-time lifecycle phases. These include:
Run-time: ACES is a fast-time distributed simulation
system. At runtime a collection of networked computers
work together to generate a representation of the NAS,
with each computer being assigned some subset of a
scenario’s domain elements and support functions (e.g.,
data collection). The primary goal of using multiple
computers is to obtain higher performance via parallel
execution. Consequently, the primary job of the run-time
architecture is to provide and integrated execution
environment that allows the federation’s computers to run
in a coordinated and efficient fashion. This is
accomplished by providing a distributed time
management facility that ensures that the various
federates stay synchronized, an efficient data distribution
mechanism that works within time management to ensure
that messaging between federates adheres to the causality

of the simulation (that is, messages always get delivered
to the application in order of simulation time, regardless
of network delivery order) and a set of simulation control
functions that allow the federates to perform coordinated
start-up, shut-down, etc.
Development-time: ACES also has the driving
requirement of being configurable, based on a model
toolbox. Composability of ACES executions as needed for
particular studies is required both within federates and
between federates. The first level of composability is
intra-federate, model-level composition. This level deals
with models within federates. Ideally, this level of
composition should not only facilitate model development
and federate assembly but also insulate the model
developer from needing to consider the vagaries of
distributed simulation.
Interoperability: The second level of ACES composition
exists between federates. ACES complies with the High
Level Architecture. Thus, entire federates, whether or not
they are built using the ACES infrastructure, can be
executed together as long as they are HLA-compliant and
use the ACES FOM and Federation Agreements.

Usability: The simulation system must not only execute
quickly but also be usable by analysts. Run-time usability
features include the ability to control the simulation from
a single computer and the ability to support visualization
of scenario evolution. Usability also includes capabilities
to connect the simulation to the analytical context in
which it is used. This includes the ability to collect data
from the simulation and manipulate simulation data into
formats which can be fed to downstream assessment
tools.
Life-cycle Features: Last, the use and management of
analytical simulation tools can be greatly aided by
lifecycle tools that manage the model toolbox and system
databases, create scenarios and automate linkages to
external data. The ACES system design considers such
capabilities. Such tools are, however built “around” the
simulation and so are not included in ACES system
requirements, detailed architecture or planned
capabilities.

3.2 Architectural Vision
Figure 2 shows the overall system architecture, which can
be seen as a set of applications that share a common
infrastructure. The infrastructure supports both run-time
communications, focused on high-performance data
exchange and coordination for simulations, and non-
runtime communications, focused on managing persistent
data (simulation inputs and outputs). As shown in Figure
2, the simulation infrastructure is built on a foundation of
standard networking protocols provided by the computer
operating system (shown in green). Layered above this
are industry-standard inter-process communications

Agent: ARTCC - ZNY

Flow Prediction
And

Mgmt
TFM TFM
ActivityActivity

Monitoring,
Vectoring

Implement TFM
ATC ATC
ActivityActivity

Agent: ARTCC - ZDC

Flow Prediction
And

Mgmt
TFM TFM
ActivityActivity

Monitoring,
Vectoring

Implement TFM
ATC ATC
ActivityActivity

InterInter--Agent Agent
CommunicationsCommunications
(Channel(Channel--based)based)

Federate: Region #1

RTI: RTI:
• Connects channels

across federates for
seamless agent-to-
agent
communications

• Synchronizes time
across the federation

R
T
I

Federates: Region #2 - N

R
T
I

Other federates
M

ay
 b

e
m

or
e

th
an

 o
ne

 fe
de

ra
te

 p
er

co

m
pu

te
r

R
T
I

Cybele: Cybele:
• Provides host

environment for
models

Agent: ARTCC - ZNY

Flow Prediction
And

Mgmt
TFM TFM
ActivityActivity

Monitoring,
Vectoring

Implement TFM
ATC ATC
ActivityActivity

Agent: ARTCC - ZDC

Flow Prediction
And

Mgmt
TFM TFM
ActivityActivity

Monitoring,
Vectoring

Implement TFM
ATC ATC
ActivityActivity

InterInter--Agent Agent
CommunicationsCommunications
(Channel(Channel--based)based)

Federate: Region #1

RTI: RTI:
• Connects channels

across federates for
seamless agent-to-
agent
communications

• Synchronizes time
across the federation

R
T
I

Federates: Region #2 - N

R
T
I

Other federates
M

ay
 b

e
m

or
e

th
an

 o
ne

 fe
de

ra
te

 p
er

co

m
pu

te
r

R
T
I

R
T
I

Cybele: Cybele:
• Provides host

environment for
models

protocols including HTTP, Remote Method Invocation
and ODBC/JDBC for database access. This layer of the
architecture also includes the HLA RTI, which provides
the backbone of run-time communication. Non-runtime
communication is based primarily upon ODBC/JDBC
database communications.

The communications layer includes several standards for
representing data and commands. Data representation
standards include the HLA Federation Object Model as
expressed by the HLA Object Model Template as well as
the Extensible Markup Language (XML) promulgated by
the World Wide Web Consortium (W3C).

Above these infrastructure components sits the ACES
simulation engine/agent framework. ACES federates are
not required to use this framework; as shown in Figure 2,
COTS, GOTS and legacy codes can be used in ACES
federations. Use of the simulation engine, however
greatly facilitates development of simulations made up of
“plug-and-play” models by: enforcing clean model
interfaces, providing modelers a layer of insulation from
distributed communications and time coordination details
and providing built-in basic services for simulation time
and event management.
ACES infrastructure components and applications are
connected not only through common infrastructure
functionality but also by common data models. Common
data models take the form of Federation Object Models

(which are mapped with matching inter-agent message
classes) and database schemata. These common models
are the foundation of interoperability among run-time
applications as well as between run-time and post-
processing tools. Common schemata could also be used to
add simulation initialization data into this common
picture.

Last are the ACES applications themselves. ACES run-
time applications include Cybele-based simulation
federates, utility and control federates implementing
functions such as control of simulation rate, monitoring
and data collection. The various run-time applications
together create an integrated synthetic representation of
the National Airspace System. The applications execute
as independent programs across multiple computers,
using the infrastructure to communicate, coordinate and
store data. Post-runtime applications can access the stored
data to support analyses of experimental data collected
from simulation executions.

4. Agent Simulation Infrastructure for
Federates

As discussed earlier ACES uses an RTI compliant agent
infrastructure and agent-based approach to model and
simulate entities within a federate.

The agent infrastructure is based on IAI’s
OpenCybele‰/Cybele‰ agent infrastructure. Cybele is

Integration/Communications ODBC/JDBC HLA RTI RMIHTTP

OS Services: file transfer/sharing, networking (TCP, UDP …)

Common Data Models (FOM/Schema)

Simulation
Execution Mgmt

(including control/
monitoring agents,
multiple run control)

Legacy
Gateways

(Federates)
Simulations
(Federates)

M
od

el
s

M
od

el
s

M
od

el
s

Legacy
Simulations

(directly integrated
via HLA)

Other HLA
GOTS/COTS
(Data Collection,

Sim Monitoring and
Control, etc.)

System
Data

Post-processing
and

Assessment
Tools ACES Simulation Engine

(Agent Framework)

Ap
pl

ic
at

io
ns

In
fra

st
ru

ct
ur

e

Operating System

Common Middleware

Run-time Applications

Post-Run-time Applications

SQL XML

Integration/Communications ODBC/JDBC HLA RTI RMIHTTP

OS Services: file transfer/sharing, networking (TCP, UDP …)OS Services: file transfer/sharing, networking (TCP, UDP …)

Common Data Models (FOM/Schema)

Simulation
Execution Mgmt

(including control/
monitoring agents,
multiple run control)

Legacy
Gateways

(Federates)
Simulations
(Federates)

M
od

el
s

M
od

el
s

M
od

el
s

Legacy
Simulations

(directly integrated
via HLA)

Other HLA
GOTS/COTS
(Data Collection,

Sim Monitoring and
Control, etc.)

System
Data

Post-processing
and

Assessment
Tools ACES Simulation Engine

(Agent Framework)

Ap
pl

ic
at

io
ns

In
fra

st
ru

ct
ur

e

Operating System

Common Middleware

Run-time Applications

Post-Run-time Applications

Operating System

Common Middleware

Run-time Applications

Post-Run-time Applications

SQL XML

Figure 2: Unified System Architecture

built on the top of the Java 2 platform and provides the
runtime environment for control and execution of agents.
The architecture consists of a kernel and several service
implementations.

The architecture kernel provides certain application
interface methods for agent programmers to write classes
representing activities using the ACP paradigm. These
methods are called Activity Oriented Programming
Interface (AOPI) methods. The AOPI’s in turn use the
published interfaces to different agent services. The
execution environment supporting ACP is a layer above
Java Virtual Machine. (See Figure 3). Since ACP is a
restricted version of OOP, the execution environment
supporting ACP restricts the functionality of activity
objects to be event-driven. Note that the activity classes
also use the java packages in addition to AOPI.

Figure 4: Service Layered Architecture

 The agent-infrastructure adopts a service-layered
architecture promoting plug-n-play capability of agent
services (see Figure 4). The services and their interfaces
are defined in such a way that performance can be fine-

tuned by loading different service implementations as
appropriate to the OS/platform/network and/or the agent
application domain, without having to re-write the agent
code

 The agent services are categorized into three types of
layers–-basic, fundamental, and supplemental--based on
their relevance to a typical agent runtime environment.
The basic are the essential services required for creating
agents, activities, agent operation, and inter-activity
communication. They include error handling, concurrency
management, event handling, thread-management, and
internal event services. The fundamental services are
primarily event generation services that are essential for
autonomous and communicative multi-agent system.
They allow an agent to send messages to another agent
that is either co-located on the same host or is on a host
that is across the network. They also allow an agent to set
an alarm and generate a self timer-event. Services
included in the fundamental layer are communication,
timer, data sharing and GUI services. The supplemental
services are services that enhance performance and
include migration and load balance services

The architecture supports the (ACP) paradigm, distributed
computing/simulation, location independent channel
based publish-subscribe messaging including,
synchronous, asynchronous, broadcast and point-to-point
messaging.

5. Agent Infrastructure-HLA Interactions
Integrating the Cybele infrastructure with the RTI
involved several steps. First, the native Cybele inter-agent
communications service had to be replaced with HLA-
compliant communications. Second, the Cybele timer,
event management and thread management service were
adapted to support time-managed, fast-time discrete event
simulation and sender-side filtering. In this section we
discuss the details of interfaces of the communication,
timer and event management services with the HLA/RTI.

5.1 Interfacing with the RTI: Interest
Management

The agent infrastructure uses a concept of message
channels for communications. Agents publish messages
to particular channels using the provided AOPI’s, and
other agents can opt to receive messages by subscribing to
channels. The RTI uses a similar mechanism, however in
place of channels the RTI uses the more generic notion of
routing spaces. If routing spaces are not defined then
interactions are forwarded to all other federates
subscribed to that class of interaction; routing spaces
optimize network utilization by allowing data to be

Figure 3; The layers of Activity objects and its execution
environment

JVM

Execution
Environment

Java
packages

AOPI
Java

Object

Activity
Object

filtered at the sending end so that interactions get send
only to the federates interested in that interaction.

Conversion between Cybele communications notions
(serialized Java objects over message channels) and RTI
notions (FOM objects over RTI Data Management or
Data Distribution Management) involves several steps
which are done, transparent to the user, by the
infrastructure.

First, each federate knows the interests of the other
federate on the network. If no other federate is interested
in a published message then the sending federate delivers
it to its local channels but it is not distributed by the RTI.
This feature is known as Sender Side Filtering.

If a remote interest in the data has been established, then
the infrastructure checks to see if there is a matching
FOM interaction for this Cybele message object. If the
FOM interaction does not exist then the object is
packaged as a serialized Java object within a special FOM
interaction class. This interaction is forwarded to the other
federates, which reconstitute the object into the
appropriate Java class and pass it to the appropriate
Cybele channel.

If, however, a matching FOM class is found, the attributes
of the Java class are copied into the matching attributes of
the FOM class (matching requires identical names
between Cybele and FOM attribute names). Any
“leftover” parameters in the Cybele object are streamed
into an extra interaction attribute called “reserved”. At the
receiving end an object of the appropriate Java class is
again reconstituted from the data in the FOM interaction
and passed to the appropriate Cybele channel.

The integrated agent-HLA approach eliminates the need
for the modeler to distinguish between inter-and intra-
federate messaging. Agents simply send and receive
messages and the common agent infrastructure takes care
of dispatching messages to other interested agents,
whether they are local or in different federates. This
approach allows simulation developers to define a
message once; inter-agent (intra-federate) messages are
automatically carried through to the inter-federate level.

This approach also provides automation in FOM agility.
The contents of inter-agent messages can be augmented
without affecting the FOM, as each FOM class contains a
holder for packed “extra” attributes and the infrastructure
automates translation between native Java and FOM
formats. The infrastructure also minimizes required
maintenance when both the Java message classes and the

FOM change, as the hookup between the two message
representations is automated.

Last, the ACES infrastructure is able to handle objects
with greater complexity than can natively be represented
in a FOM. ACES message classes can contain sub-objects
as well as collections of both primitive and object types.
The infrastructure handles such objects by converting
their complex components into XML strings. These
strings are passed as RTI attributes and are reconstituted
at the receiving end.

5.2 Interfacing with the RTI Time Management:
Timer Service

Time management and synchronization is critical in any
distributed simulation. To enable composability it is
critical that the models and/or simulations issues related
to time management across the simulation be decoupled
from the models. To ensure this the infrastructure timer
service is built around the concept of logical time. (The
logical time is also referred to as simulation time since it
represents the current time within the simulation. The
time management approach uses HLA’s event driven
next-event request (NER) functionality to advance time.

Each Cybele-HLA federate has associated with it the
current logical time t, that is initially initialized during
start-up across the federation by a global discrete clock.
The models use the various timer AOPI’s to set
timers/alarms, with respect to the local logical time, to
trigger/process events at desired intervals.

Models are written as event-driven agents that are
independent of the underlying time management
infrastructure. They do not need to know anything about
advancing or managing time. Rather, they need only to
respond to individual events and how to schedule events
using timers. For example, a flight model can have a
timer that sends a message regarding its position and
speed to a “controller” agent every 10 logical time units.

Each federate is in one of two states, the message
processing state or the advancing time state. In the
message processing state, the federate is in the process of
dispatching all messages at the current logical time t. As
agents process messages and timer events, new messages
timestamped at t+1 may be generated, or new timer
events may be scheduled at future logical times. Once all
messages on the system message queue have been
processed, the federate seeks to advance time to the next
logical time at which it has events to process by entering
the advancing state

In the advancing time state, the federate may continue to
receive messages timestamped at t+1. However, it is
guaranteed not to generate any more messages since all
messages have been processed.

5.3 ACES Event Management
The ACES event management service works in
conjunction with the time management service to insure
that messages are delivered in a predictable and
deterministic manner. It is designed to support repeatable
simulation under any configuration. This means that
given the same set of agents with the same initial
conditions, the system will produce the exact same results
under any assignment of agents to Cybele-HLA federates.
This is made possible by the fact that the agent is the
basic unit of distribution: each agent can be modeled as a
deterministic entity that takes events in a stream and
produces new events in the “future.”

In order to support repeatability, it is important to ensure
that all events always arrive in the same order. For
example if agents A, B, and C are sending to agent X
from different federates, the order of messages arriving at
logical time t is not guaranteed to be the same, since HLA
RTI does not order messages with the same timestamp.
Moreover, internal messages and timer events must also
be ordered correctly.

To insure deterministic message deliver, each message is
tagged with the sending agent, a sequence number and the
activity identity. During the beginning of each message
processing state, all of the events for each agent are sorted
according to a specific comparison criterion that produces
deterministic results.

Although the Cybele-HLA enables repeatable,
reconfigurable simulation, individual models/agents must
still be written in a manner that allows deterministic
behavior which is independent of local configuration. For
example, it is necessary to ensure that all agents that use
pseudorandom number sequences have their own seeds
and generators and do not share them with other agents.

6. Developing Models in ACES
From a models perspective developing/coding models in
ACES reduces to coding agents and their interactions with
other agents using the AOPI’s corresponding to creating
agents, creating activities, setting up timers, publishing
and subscribing to appropriate channels, and invoking
appropriate callback in response to events (messages and
timers). From a modelers perspective no modification to
the agent software needs to be made to compose a set of
agents into a federation, join the federation and interact

with other simulations via the RTI. These activities are
handled by the agent infrastructure. Transparent to the
user the infrastructure (i) maps Cybele channels into
appropriate RTI routing space for inter-federate
communications; (ii) translates intra-federate serialized
messages into FOM complaint interactions when they go
across the network; (iii) implements message transport;
and (iv) Integrates Cybele-time management with RTI
time management.

7. Simulation Control and Data Collection
As an HLA federation the ACES system is amenable to
standard federation control functionality. The primary
simulation control module is the Visualization/Scenario
Tool (VST). The VST, which is itself a Cybele-based
federate, performs a number of functions. First, it controls
initialization for the entire ACES federation. In ACES
each Cybele-based federate starts up in a generic mode –
it does not immediately create any model agents. The
VST allocates functionality to the various federates,
providing information to each as to which domain entities
it is assigned and consequently what set of agents it is to
instantiate. The VST also provides runtime visibility into
the federation execution. It includes a plan view display
and can also display a range of flight and air traffic
control parameters. The VST and related helper
applications also include a range of other utility functions
including speed control (allowing the simulation to be
slowed down or coordinated with wall-clock time),
synchronized start-up, and distribution of initialization
data.
Data collection in the present build of ACES is
accomplished primarily through the GOTS DCT data
collection tool. This has the advantage of being
configurable and was able to be implemented with a
modest effort, however limits data collection to FOM
data. Future builds will investigate mechanisms for
collecting federates’ internal state data as well as FOM
information.

8. Conclusions
The ACES design provides a unique approach to the
modeling and simulation of new NAS concepts. By
acknowledging the need to provide a flexible and
dynamic simulation capability, the ACES design utilizes
the HLA / Agent Infrastructure to realize these critical
requirements. The Modeling Toolkit approach, and the
agent-based paradigm used to structure the models and
their interactions, provides a modeling structure that
correlates to the NAS operational environment.

Current architectural work focuses on enhancing the
multiple run/Monte Carlo simulation features,
performance optimization, implementation of a richer

data collection mechanism and continued support for
population of the model toolkit.

The combination of these new capabilities with the
proven agent-based infrastructure will provide a
simulation tool capable of supporting complex,
distributed fast-time simulation to meet NASA's research
requirements.

9. Acknowledgements
ACES development effort is part of a three and a half year
project supported by the Air Traffic Management System
Development and Integration Contract team consisting of
The Raytheon Co., Seagull Technology, SAIC, Intelligent
Automation, Inc. (IAI), TITAN, Metron, Booz-Allen
Hamilton and others. The authors wish to acknowledge
the efforts of the many individuals in these organizations
that have contributed to the design and development of
the ACES prototype. Specifically, we would like to
acknowledge technical contributions by Pauline
Froemberg, Mary Ellen Miller and Ed Stevens of
Raytheon; Marlin Johnson, Roger Wuerfel and Thomas
Lee from SAIC; Anna Teittinen, and David Ditzenberger
from IAI; Paul Abramson of PDA Associates (TITAN,
Inc); Doug Sweet, and George Hunter of Seagull
Technology.

10. References
[1] Federal Aviation Administration, Aviation Policy

and Plans (APO), http://api.hq.faa.gov/pubs.asp.
[2] Doug Sweet, Vikram Manikonda, Jesse Aronson,

and Karlin Roth. Fast-Time NAS Simulation for
Analysis of Advanced ATM concepts. In AIAA
Modeling and Simulation Conference and Exhibit,
5 - 8 Aug 2002 Monterey, California

[3] See
http://www.asc.nasa.gov/vams/tim2/download/09_
Roth(NRT).pdf for details on ACES

[4] OpenCybele,http://www.opencybele.org, Intelligent
Automation Incorporated.

[5] Michael Wooldridge. Introduction to Multiagent
Systems, John Wiley and Sons, 2002

[6] Multiagent Systems: A Modern Approach to
Distributed Artificial Intelligence by Gerhard Weiss
(Editor), Cambridge, MA, The MIT Press, 1999

[7] Kutluhan Erol, Jun Lang and Renato Levy.
Designing Agents from Reusable Components. In
proceedings of the Fourth International Conference
on Autonomous Agents, Barcelona, Spain 2000.

Author Biographies
JESSE ARONSON is a Senior Technical Manager at
Science Applications International Corporation. He holds

a M.S. from Polytechnic Institute of New York and a B.E.
from The Cooper Union, both in Electrical Engineering.
He is a licensed Professional Engineer. Mr. Aronson has
been active in the government simulation community for
fourteen years. Prior to this Mr. Aronson designed sonar
and satellite navigation systems.

VIKRAM MANIKONDA is the Director of the
Distributed Intelligent Systems Group at Intelligent
Automation Incorporated. He received his B.E. degree in
Electrical Engineering from the Birla Institute of
Technology and Science, India, in 1992, his M.S. and
Ph.D. degrees, both in Electrical Engineering, from the
University of Maryland at College Park, in 1994 and
1997 respectively. His research interests include
intelligent control, robotics and multi-agent systems,
modeling and simulation

WILBUR PENG is a Research Scientist at Intelligent
Automation, Inc. He obtained a B.S. from Cornell
University and a PhD from the University of Maryland in
electrical engineering. His research interests currently
include intelligent agents, machine intelligence, pattern
recognition, and neural networks.

RENATO LEVY is a Principal Research Scientist at
Intelligent Automation Incorporated. He received his B.S.
degree in Electrical Engineering from the Federal
University of Rio de Janeiro, Brazil in 1986, his MBA
degree in Administration and Finance from the Institute
for Business and market economy (IBMEC), Brazil. Mr.
Levy is currently a Ph.D. candidate at George Washington
University specializing in the field of Computer Science
with a major in Distributed and Parallel Computing

KARLIN ROTH is the Chief of the Aerospace
Operations Modeling Office within the Aviation Systems
Division at NASA Ames Research Center. She has
responsibility for technical and programmatic
development of research leading to a system-level
evaluation capability for the airspace system. Dr. Roth
earned PhD and MS degrees in Aerospace Engineering
from the University of Florida and a BS degree in Applied
Mathematics from the Indiana University of
Pennsylvania.

